Tetrahedron Letters 50 (2009) 4610-4612

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

phenyl)-6,7-dimethoxyisoquinolinium inner salt are reported.

Synthesis and structure elucidation of a new isoquinolinium inner salt

Ulrich Girreser^a, Andrzej Czyrski^{b,*}, Tadeusz W. Hermann^b

^a Department of Pharmaceutical Chemistry, Christian-Albrechts-University, Gutenberg Street 76, 24118 Kiel, Germany ^b Department of Physical Pharmacy and Pharmacokinetics, K. Marcinkowski University of Medical Sciences, 6 Święcicki Street, Poznań 60-781, Poland

ARTICLE INFO

ABSTRACT

Article history: Received 25 February 2009 Revised 19 May 2009 Accepted 26 May 2009 Available online 30 May 2009

Keywords: Papaverine alkaline decomposition Isoquinolinium inner salt NMR UV-vis

Papaverine **1** is an isoquinoline alkaloid that is found in opium.¹ In medical therapy its hydrochloride and sulfate salts are used and it is unstable if exposed to oxygen and UV light. Oxidation of **1** leads to products such as papaverinol, papaveraldine and the recently discovered 2,3,9,10-tetramethoxy-12-oxo-12*H*-indolo[2,1*a*]isoquinolinium chloride **2**.^{2,3} Compound **2** inhibits telomerase and polymerase Taq activity⁴ and its cytotoxic behaviour has been investigated against breast cancer, malignant melanoma, lung adrenocarcinoma, laryngeal cancer and gastric cancer cell lines.⁵ In contrast to **1**, compound **2** is tetracyclic. The characteristic features of the structure of **2** are the presence of a carbonyl group and positively charged nitrogen bonded to a substituted phenyl ring (Fig. 1). The above-mentioned oxidation products of **1** are found on storage of its injection solutions, which become first yellowish, then brownish in colour.⁶

A brown methanol solution of **2** is discoloured upon addition of aqueous NaOH solution which also results in UV spectral changes. The absorption maxima of **2** in methanol solution are hypsochromically shifted from $\lambda_{max} = 310$ nm (lg $\varepsilon = 4.74$) and $\lambda_{max} = 398$ nm (lg $\varepsilon = 4.10$) to $\lambda_{max} = 256$ nm (lg $\varepsilon = 4.77$) and $\lambda_{max} = 322$ nm (lg $\varepsilon = 4.17$) when NaOH is added as a result of formation of ring-opened compound **3** (Fig. 2).

The structure of compound **3** was deduced from mass spectrometric experiments. The electron impact mass spectrum (EI-MS) of **3** gave a molecular ion at m/z 369. The electrospray ionization mass spectrum (ESI-MS) was characterized by a pseudomolecular ion [M+H⁺] at m/z 370 and the molecular formula is based on HREI-MS of the [M⁺] ion peak at m/z 369.12205, calculated for C₂₀H₁₉NO₆; 369.12124 (Δ –2.2 ppm). The new product was identified as 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt **3**; molecular formula: C₂₀H₁₉NO₆.⁷ On addition of hydroxide, ring opening occurs at C-12 of compound **2** via the mechanism proposed in Scheme 1.

© 2009 Elsevier Ltd. All rights reserved.

Papaverine is a drug that can be easily oxidized to papaverinol, papaveraldine and to recently discovered

2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride. In a strong alkaline medium

the spectroscopic properties of this latter compound are modified indicating formation of a new com-

pound. The isolation and structure elucidation of this compound as 2-(2-carboxy-4,5-dimethoxy-

The structure of compound **3** was confirmed by NMR experiments. Examination of the ¹H NMR spectrum of **3** obtained in methanol- d_4 (TMS as internal standard) revealed clearly the presence of seven aromatic protons and twelve protons due to the methoxy groups (Table 1). The ¹H NMR spectrum was also recorded in DMSO- d_6 and 19 protons were again observed. The aromatic protons were assigned to the isoquinoline ring and a phenyl substituent. Four three-proton singlets were assigned to the four methoxy groups: two isoquinoline (δ 4.13, C-6; δ 3.98, C-7) and two phenyl (δ 3.96, C-4'; δ 3.90, C-5'). The ¹H, ¹³C HSQC spectrum confirmed the presence of seven aromatic protons.

The negatively charged carbon of the carboxyl group is deshielded (δ 170.29) in the ¹³C NMR spectrum. According to the literature data the –COO[–] carbon appears at δ 169.8 in reticulatate and at δ 164.1 in 14-bromoreticulatate in methanol- d_4 .⁸

The ¹H, ¹³C HMBC spectrum showed no correlation between H-3 and the $-COO^-$ carbon. However, protons H-3' and H-6' did correlate with the carboxylate carbon at δ 170.29. Additional correlations are shown in Table 1.

The NOESY coupling between H-1 and H-8 confirms the presence of a hydrogen at δ 9.47 on the isoquinoline ring and this was also proved by the COSY LR (LR–long range) correlation of H-1 with H-3, H-4 and H-5. NOESY and COSY LR correlations are also presented in Table 1.

^{*} Corresponding author. Tel.: +4861 854 64 33; fax: +4861 854 64 30. *E-mail address*: aczyrski@ump.edu.pl (A. Czyrski).

^{0040-4039/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.05.099

Figure 1. The structure of papaverine 1 and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride 2.

Figure 2. The UV-vis spectra of compounds 2 (dashed line) and 3 (solid line) in methanol.

Scheme 1. Mechanism of the formation of 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt 3.

The chemical shift of the nitrogen in the ¹⁵N NMR spectrum (-178.3; nitromethane scale) clearly shows that it is positively charged.⁹ The HMBC ¹H-¹⁵N NMR spectrum recorded in DMSO- d_6 showed couplings to the signals at δ 8.34 and δ 8.16 (H-3 and H-4), to the two singlets at δ 7.15 and δ 7.58 (H-6' and H-3') and to the doublet at δ 9.47 (H-1). This confirms that the isoquinoline nitrogen is linked to the phenyl ring carbon.

The proton at δ 9.47 is shifted downfield as a result of the positively charged nitrogen and negatively charged carboxyl group. Similar values can be found in reticulatate (δ 9.21) and 14-bromoreticulatate (δ 9.41).⁸ These protons are *ortho* with respect to the positively charged nitrogen.

The NMR data also confirm the presence of isoquinoline and phenyl rings and are similar with the NMR data for compound **2**.³

Peaks in the IR spectrum due to antisymmetrical and symmetrical stretching at 1599 cm^{-1} and 1398 cm^{-1} , respectively, are characteristic of the $-COO^-$ group.¹⁰

Stable zwitterions can also be found among 2,4,6-triphenylpy-ridinum derivatives.¹¹

Furosemide is a drug that can also be oxidized to zwitterions. Its chemical oxidation leads to 4-chloro-2-(3-hydroxypyridinium-1-yl)-5-sulfamoylbenzoate which has an inner salt formula.¹² These compounds possess a positively charged nitrogen and the -COO⁻ group *ortho*⁵ to the carbon bonded to nitrogen in the isoquinoline ring.

Walterová et al.¹³ reported that papaverine derivatives exist as pseudobases in alkaline solutions. The hydroxy groups bond to the isoquinoline ring at position 1 as was confirmed by ¹H NMR analysis. Our study confirms the observations of Fretz et al.¹⁴ who ob-

Та	hle	1

¹⁵N (30 MHz), ¹³C (75 MHz), ¹H (300 MHz), COSY LR, HMBC and NOESY data for 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt **3** in methanol-d₄

No.	$^{15}N(\delta)^{a}$	¹³ C (δ)	¹ Η (δ, Hz)	COSY LR ^c	HMBC $(^{1}H-^{13}C)$	HMBC $({}^{1}H-{}^{15}N)^{d}$	NOESY
1		147.5	9.47 d (1.5)	3, (4), 5	1′, (3), 4a, 8, 8a	(2)	6′, 8
2	−178.3 (−181.9) ^b					(1), 3, (3'), 4, 6'	
3		136.27	8.34 dd (6.8; 1.5)	4	1,1′, 4, 4a, (6), (8a)	2	6′
4		123.13	8.16 d (6.8)	3, 8	(1), 3, 5, (8), 8a	2	5
4a		137.33					
5		106.38	7.64 s	3,6-OMe	(1), 4, 6, 7, 8a		4, 6-OMe
6		159.97					
7		154.35					1
8		108.29	7.57 s	4, 7-0Me	1,(4), 4a, (5), 6, 7		7-OMe
8a		125.09					
1′		136.15					
2′		128.24					
3′		114.35	7.58 s	4'-OMe, 6'	1', 2', 2'-COO ⁻ , 4', 5', 6'	(2)	4'-OMe
4′		151.32					
5′		151.49					
6′		110.74	7.15 s	3',5'-OMe	1', 2', 2-COO ⁻ , (3'), 4', 5'	2	5'-OMe
6-OMe		57.52	4.13 s	5	5,6		5
7-OMe		57.00	3.98 s	8	7, 8		8
2′-COO ⁻		170.29					
4'-OMe		56.54	3.96 s	3′	3', 4'		3′
5′-OMe		56.95	3.90 s	6′	5', 6'		6′

^a Chemical shift obtained from the ¹H-¹⁵N HMBC NMR and referenced to nitromethane.

^b Chemical shift recorded in DMSO-*d*₆.

^c Weak signals in parentheses.

^d Spectrum recorded in DMSO-*d*₆.

served that fascaplysin, on treatment with a solution containing OH^- ions, underwent a change in its colour indicative of its conversion to reticulatate.^{7,14} In the case of **2** the tetracyclic structure is converted into zwitterionic product **3** and the UV spectrum is shifted to a shorter wavelength.

Compound **2** was synthesized by irradiating a 0.3% (w/v) chloroform solution of papaverinol with a low-pressure mercury lamp at 254 nm for 4.5 h.³ The crude material dissolved on boiling in methanol and crystallized as a black powder; yield up to 40%.

Compound **3** was obtained by dissolving **2** in a 0.4% aqueous NaOH solution with heating for 2 h at 60 °C. The solvent was evaporated and the residue was dissolved in CHCl₃–CH₃OH (1:1) mixture (yield of crude product was 15%). The product was isolated by column chromatography on aluminium oxide (ECO-CHROM, Germany), mobile phase: reagent grade CHCl₃, CHCl₃–CH₃OH (20:1, 10:1, 5:1, 1:1 v/v) and finally reagent grade CH₃OH. The product was observed on the column as a white fluorescent band using a UV₃₆₅ lamp and was separated, washed with water and chloroform and dried (yield of pure **3** = 10%). The purity was confirmed by TLC on aluminium oxide (POLYGRAM, MACHEREY-NA-GEL, Germany) using chloroform–methanol (1:1; v/v) as the mobile phase; $R_f = 0.88$.

Acknowledgement

The Department of Pharmaceutical Chemistry at Christian-Albrechts-University in Kiel (Germany) is acknowledged for a twomonth research fellowship to Andrzej Czyrski. This project was supported by a research Grant (No. NN 405 178 335) of The State Committee for Scientific Research (Poland).

References and notes

- 1. Schmidt, J.; Boettcher, C.; Kuhnt, C.; Kutchan, T.; Zenk, M. *Phytochemistry* **2007**, 68, 189–202.
- Piotrowska, K.; Hermann, T.; Augustyniak, W. J. Pharm. Biomed. Anal. 2006, 41, 1391–1395.
- Girreser, U.; Hermann, T.; Piotrowska, K. Arch. Pharm. Pharm. Med. Chem. 2003, 336, 401–405.
- Gałęzowska, E.; Masternak, A.; Rubiś, B.; Czyrski, A.; Rybczyńska, M.; Hermann, T.; Juskowiak, B. Int. J. Biol. Macromol. 2007, 41, 558–563.
- Mądry, L.; Gałęzowska, E.; Głuszyńska, A.; Hermann, T.; Zabel, M.; Juskowiak, B. Pol. J. Chem. 2006, 80, 921–929.
- 6. Hermann, T.; Lisowski, Z.; Wroński, A. Biul. Wojsk. Akad. Med. Lodz Poland 1965, 8, 235–241.
- Czyrski A., Hermann T., Wyrzykiewicz E., Girreser U. Poland Patent P 387214, 2009.
- Segraves, N.; Lopez, S.; Johnson, T.; Said, S.; Fu, X.; Schmitz, F.; Pietraszkiewicz, H.; Valeriote, F.; Crews, P. *Tetrahedron Lett.* 2003, 44, 3471– 3475.
- Marek, R.; Humpa, O.; Slavik, J.; Sklenář, V. Magn. Reson. Chem. 1999, 37, 195– 202.
- Zieliński, W.; Rajca, A. Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych; Wydawnictwa Naukowo-Techniczne: Warsaw Poland, 2000. p. 362.
- 11. Katritzky, A.; Krutošiková, A.; Ramsden, C.; Lewis, J. Coll. Czech. Chem. Commun. 1978, 43, 2046–2053.
- 12. Chen, L.; Burka, L. Chem. Res. Toxicol. 2007, 20, 1741-1744.
- Walterová, D.; Preininger, V.; Dolejš, L.; Grambal, F.; Kyselỳ, M.; Válka, I.; Šimánek, V. Coll. Czech. Chem. Commun. 1980, 45, 873–956.
- 14. Fretz, H.; Ucci-Stoll, K.; Hug, P.; Schoepfer, J.; Lang, M. Helv. Chim. Acta 2001, 84, 867.